Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

نویسندگان

  • Jung Kyu Kim
  • Sang Jin Kim
  • Myung Jin Park
  • Sukang Bae
  • Sung-Pyo Cho
  • Qing Guo Du
  • Dong Hwan Wang
  • Jong Hyeok Park
  • Byung Hee Hong
چکیده

UNLABELLED Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-yield synthesis of graphene quantum dots with strong green photoluminescence

Recently, a kind of luminescent carbon nanomaterial – graphene quantum dots (GQDs) – has been attracting more and more attention. GQDs are graphene sheets of less than 100 nm in size, which have been regarded as a promising functional material due to their unique properties, such as ultraviolet and blue to green luminescence, two-photon induced FL, excellent photo stability, ands biocompatibili...

متن کامل

Graphene quantum dots as the hole transport layer material for high-performance organic solar cells.

We present an investigation of organic photovoltaic (OPV) cells with solution-processable graphene quantum dots (GQDs) as hole transport layers (HTLs). GQDs, with uniform sizes and good conductivity, are demonstrated to be excellent HTLs in both polymer solar cells (PSCs) and small-molecule solar cells (SMSCs) with the blend of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015